跳到主要內容

胭脂紅(cochineal)是怎麼來的?

不知道大家看過「無果汁飲料」那個影音檔嗎?在這個影音檔中,安部司先生帶著我們看到,不需要果汁也可以做出飲料。

在那個影音檔中提到,紅色的色素可以由「胭脂蟲」提煉出來,因為不是人工合成的,所以這樣叫做「天然」的食用色素。還記得在不同的課程中播放這一段時,很多同學都嚇到了。

應該是「吃小蟲」這個想法把大家給嚇到了吧?不過大家想過胭脂蟲長什麼樣子嗎?
雌(左)雄(右)胭脂蟲(cochineal, Dactylopius coccus
圖片來源:維基百科

從上圖可以想見,胭脂蟲長得一點也不特別,而且牠是仙人掌的害蟲。被牠寄生的仙人掌會變成下面那張照片的樣子。

被胭脂蟲寄生的nopal仙人掌。圖片來源:維基百科

胭脂蟲專門寄生在這一屬(Opuntia)的仙人掌上面。如果你看到上面的照片想到介殼蟲(scale insect),你猜對了。

胭脂蟲其實是介殼蟲的一種,全世界大約有8,000種介殼蟲,大部分都對我們沒什麼好處。這些蟲因為外殼有蠟質,所以噴灑殺蟲劑很難殺死他們。最好的辦法是用一些園藝界專用的油,噴在他們身上,讓他們窒息。
寄生在nopal仙人掌上的雌胭脂蟲近照。圖片來源:維基百科

這種蟲的雌性以及若蟲(nymph)為了阻擋掠食昆蟲的追捕,會製造胭脂紅酸(carminic acid)。雖然胭脂紅酸可以佔牠體重的17-24%,但是在牠的腹部(abdomen)最多,因為那裡還有卵。一公克的胭脂紅染料,大約需要155隻胭脂蟲。工人會小心的把胭脂蟲用刷子刷下來,然後把牠們曬乾、蒸乾或烘乾。據說烘乾以後還要剔除掉胭脂紅酸較少的部位,只留下腹部。

與胭脂蟲同屬的介殼蟲,都有製造胭脂紅酸的能力。

胭脂紅酸。圖片來源:維基百科

當我們把胭脂紅酸提取出來後,再加入鋁鹽或鈣鹽,就成為所謂的「天然」胭脂紅染料。胭脂蟲跟牠的食草(nopal仙人掌)的產地都在中美洲,十五世紀時一度極盛,尤其以瓜地馬拉最多;後來在十九世紀(1869年),因為茜素(alizarin,在自然界中存在於茜草根內)人工合成成功而逐漸沒落,目前只有布料、食品跟化妝品還會使用胭脂紅。

茜素。圖片來源:維基百科

其實,nopal仙人掌是當地人的食物,他們會把還沒有長出尖刺的嫩莖拿來做成沙拉。筆者之前在接近美墨邊界的聖地牙哥(San Diego, CA)住了幾年,常看到nopal 仙人掌,倒是沒看過有人吃它。

nopal。圖片來源:wiki

據稱,上圖這個階段的仙人掌嫩莖做沙拉最好吃,但是也有人喜歡它稍微老一點點(如下圖)。

稍微老一點點的nopal。圖片來源:wiki

Nopal仙人掌沙拉。看來不錯的樣子,希望不要太辣。

nopal salad。圖片來源:wiki

使用這種染料並不是歐洲人的發明,胭脂蟲早在馬雅跟阿茲特克時期就開始了。阿茲特克王要求人民一年要上繳一定量的胭脂紅,而等到西班牙人佔據中美洲以後,又變本加厲地大肆剝削。等到中美洲五國獨立後,當地民眾的苦難仍未結束,雖然胭脂蟲的生產因茜素而沒落,但接著興起的卻是比胭脂蟲更耗費人工的咖啡....有時,讀著這一頁頁的血淚史,總是會掩卷歎息:為什麼苦難無了時?

參考文獻:

Wikipedia: alizarin, cochineal, nopal, scale insect

Robert G. Williams. 1994. States and Social Evolution: Coffee and the Rise of National Governments in Central America. Chapel Hill and London. 

Angel Flinn. 2010. Natural Colors – Carmine & Cochineal

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N