跳到主要內容

沒有髓鞘細胞(bundle sheath cell)的C4植物

只要學過光合作用(photosynthesis)的人,應該都知道卡爾文循環(Calvin cycle)除了傳統的 C3 反應以外,還有兩種變體:C4 與 CAM。 CAM 植物包括了仙人掌與景天科的多肉植物,他們的特徵就是只在晚上打開氣孔抓空氣中的二氧化碳,轉化為四碳的有機酸存在液泡(vacuole)中,白天則將液泡中的有機酸分解產生二氧化碳來進行卡爾文循環。而 C4 植物則具備有所謂的「克蘭茲解剖構造」(Kranz anatomy):表皮下有被葉肉細胞(mesophyll,下圖綠色)密密包圍的髓鞘細胞(bundle sheath cells,下圖紫色),髓鞘細胞的中心則是維管束(下圖紅色)。

C4 植物(玉米)葉片的橫切面。圖片來源:Wiki

從1970年代開始,大家對 C4 植物的認知就是:他們這特殊的構造與其生理學息息相關。原來 C4 植物生長在熱帶與亞熱帶,由於高溫的環境容易導致光呼吸作用(photorespiration)的發生,而光呼吸作用會消耗植物辛苦收集來的能量;而 C4 代謝由於把造成光呼吸作用的「禍首」 核酮糖-1,5-二磷酸羧化酶/加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,RuBisCo) 關進髓鞘細胞中,成功的消滅了光呼吸作用;這使它們不僅在熱帶與亞熱帶得以存活下來,甚至還取得了競爭上的優勢(關於 C4 植物詳見:為什麼「種豆南山下,草盛豆苗稀」?)。

因此,只要一想到 C4 植物就一定會想到「克蘭茲解剖構造」。是否有不具備「克蘭茲解剖構造」的 C4 植物呢?如果沒有髓鞘細胞,又要如何避免 RuBisCo 與氧氣接觸而產生光呼吸作用呢?想想好像蠻困難的!

不過,就像電影「侏羅紀公園」裡面的名言:「生命自會找到出路」,在2002年,俄羅斯的研究團隊發現一種很特別的 C4 植物  Bienertia cycloptera ,竟然沒有髓鞘細胞,也就是說,它沒有「克蘭茲解剖構造」!

Bienertia 屬植物。圖片來源:Wiki

沒有髓鞘細胞的植物要如何進行 C4 代謝呢?研究團隊發現,那胖胖而多肉的葉片由一到三層的葉綠組織(chlorenchyma,即含有葉綠體的薄壁細胞)以及位於葉片中心的儲水細胞構成。但是它的葉綠組織卻長得很特別:細胞的邊緣有一層薄薄的「周邊細胞質」(peripheral cytoplasm),中心又有一大區的細胞質構成「中心細胞質區」,(central cytoplasmic compartment,CCC)。而周邊細胞質與中心細胞質區之間,由細細的細胞質通道(cytoplasmic channel)連接。

Bienertia 的葉綠組織。
箭頭處為周邊細胞質的葉綠體。
圖片來源:The Plant Journal
儲水細胞只含有非常少的葉綠體,大部分的葉綠體都在葉綠組織裡面。妙的是,研究團隊發現,存在於葉綠組織裡的葉綠體有兩種:一種只含有很少的葉綠餅(grana)、找不到澱粉顆粒;另一種則有很多葉綠餅、也有很多澱粉顆粒。

這兩種葉綠體,雖然同時存在於葉綠組織中,但是卻不會同時出現在細胞裡的同一個位置。怎麼說呢?研究團隊發現,只含有很少的葉綠餅(grana)、幾乎沒有澱粉顆粒的葉綠體,只存在於周邊細胞質中;而有很多葉綠餅以及很多澱粉顆粒的葉綠體,只出現在中心細胞質區。

因為葉綠餅的堆疊與植物進行光合作用的能力有關,研究團隊懷疑 Bienertia cycloptera 可能利用細胞質的區隔來營造一個可以有效進行 C4 代謝的環境。於是他們決定以免疫染色來觀察光合作用相關的酵素在細胞內的分佈情形。

結果發現,造成光呼吸作用的「禍首」RuBisCo 幾乎全部位於中心細胞質區的葉綠體中;而負責在一般的 C4 植物中抓取二氧化碳的磷酸烯醇丙酮酸羧化酶(PEP carboxylase,PEPC)只出現在周邊細胞質裡。同樣的,負責讓四碳有機酸釋放出二氧化碳的酵素,也大量出現在中心細胞質區;而負責回收丙酮酸的丙酮酸磷酸二激酶(pyruvate Pi dikinase,PPDK)也幾乎只出現在周邊細胞質裡。

也就是說,雖然 Bienertia cycloptera 沒有髓鞘細胞與葉肉細胞的分別,但是卻在一顆細胞中發展出了類似葉肉細胞與髓鞘細胞的功能。大部分的 C4 植物在葉肉細胞中以 PEPC 抓二氧化碳產生四碳有機酸,透過胞間連絲(plasmodesmata)把四碳有機酸送到髓鞘細胞中,再以酵素將四碳有機酸的二氧化碳釋出,提供給卡爾文循環的 RuBisCo 進行反應;而 Bienertia cycloptera 則是在周邊細胞質以 PEPC 抓取二氧化碳產生四碳有機酸,透過細胞質通道把四碳有機酸送到中心細胞質區,再以酵素將四碳有機酸的二氧化碳釋出,提供給卡爾文循環的 RuBisCo 進行反應。

這顛覆了大家過去對 C4 植物一定要有髓鞘細胞的想法,原來只要能在空間上將抓二氧化碳與卡爾文循環隔離,並且不讓卡爾文循環的第一個酵素 RuBisCo 接觸到氧氣,其實也沒有一定要有「兩種」細胞來承擔光合作用的碳反應呢!而且研究團隊還發現,為了要盡可能地不讓 RuBisCo 接觸到氧氣,在 Bienertia cycloptera 的中心細胞質區有很多粒線體,它們都被葉綠體圍繞著...這樣即使這些葉綠體進行了光反應產生氧氣,也會很快就被粒線體給消耗掉喔!只能說,地球上的生命真的很奇妙,在學習的過程中一定要記得,規則是研究生命的人歸納的,歸納出來的規則只表示它可能是一條比較好走的路,但並不見得是唯一的路,因為「生命自會找到出路」!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Encyclopedia.com. chlorenchyma.

E. V. Voznesenskaya et. al., Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). The Plant Journal (2002) 31(5), 649-662

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light