跳到主要內容

【原來作物有故事】瘧疾的救星-金雞納(Cinchona officinalis)

金雞納樹皮。圖片來源:wiki

秘魯總督欽喬伯爵的太太得了瘧疾,用盡方法治療無效的醫師建議試試「厄瓜多樹皮」。聽起來很不可思議,但是因為已經無計可施了,所以欽喬伯爵同意試試看…沒想到真的好了。當林奈在1753年命名金雞納樹時,為了紀念這件事,他便用了欽喬伯爵的名字來命名。不過,他把欽喬伯爵的姓給拼錯了;於是就成了金雞納樹了。

金雞納原產南美洲安地斯高地,在當地總共有大約四十種金雞納樹,不同種對瘧疾的療效差異很大。耶穌會教士由秘魯的印第安人處學會了使用金雞納樹皮,並引進歐洲,所以金雞納樹皮又稱為「耶穌會教士樹皮」。在不同教派互相排斥的當時,據說就是因為這個名稱,讓克倫威爾拒絕服用,最後死於瘧疾。

從黃帝內經開始,就有瘧疾的記載。瘧疾這個古老的疾病奪走許多人的生命,包括建立橫跨歐、亞、非三洲大帝國的亞歷山大大帝。教廷甚至曾在十四世紀初因為羅馬瘧疾大流行,不得不搬到法國的亞維農68年呢!等到歐洲人發現新大陸,瘧疾也跟著一起移民了;後來,全世界除了南極洲以外都出現瘧疾。

在沒有金雞納之前,歐洲人對瘧疾一點辦法也沒有。這可以從當時古書記載的瘧疾療法看出來:除了放血、吃草藥,竟然還有讀「伊里亞德」!所以金雞納樹的發現,對歐洲人來說真的就像找到救命仙丹!但是每患一次病要用掉4.4公斤的樹皮才能治癒;而早期剝皮採用環割法,使得樹被剝完樹皮就死了。到了1795年,每年要砍掉兩萬五千株金雞納樹;但是新種的樹要十年才能開始剝皮,根本就趕不上啊!因為金雞納樹對歐洲國家實在太重要了,英國的邱園便在1858年派遣斯普魯斯與馬卡姆兩位植物獵人前往南美洲尋找金雞納樹,隨後開始在爪哇與印度種植。

奎寧。圖片來源:Wiki

除了種樹以外,科學家們也努力地從金雞納裡面找尋可以治瘧疾的成分。終於在1820年,法國科學家卡文特與伯特爾從金雞納樹皮中分離出奎寧。分離出有效成分後,接著就要想辦法開發人工合成奎寧的方法。在二戰期間,因為日本佔據了爪哇,造成奎寧的來源中斷,反而加速了美國發明氯奎的腳步。

二戰結束後,世界衛生組織展開根治瘧疾運動。除了以氯奎治療瘧疾患者以外,也到處噴灑DDT、在水溝噴灑柴油、掛蚊帳。一開始很成功,但後來卻發現DDT有毒、瘧原蟲對氯奎產生抗藥性、瘧蚊對DDT也產生抗藥性。

越來越多瘧原蟲對氯奎產生抗藥性,使中國在1967年啟動瘧疾防治藥物研究工作。一開始不是很順利,後來屠呦呦女士由東晉葛洪的著作「肘後備急方」的「青蒿一握,以水二升漬,絞取汁,盡服之」領悟到要用較低的溫度萃取,終於在1971年由青蒿中萃取新的瘧疾治療藥青蒿素。這個發現,也讓她得到2015年的諾貝爾生理醫學獎。

雖然青蒿素的發現,為瘧疾的根治帶來了一線曙光;但是瘧疾這種古老的疾病,並不會這麼容易就認輸的!到2015年時,高棉、寮國、越南、緬甸與泰國已經出現抗青蒿素的瘧原蟲。

現在根治瘧疾主要是為了大家的健康,但在十七到二十世紀初期,歐洲各國之所以如此重視金雞納主要是為了穩定勞力的供應。當時許多雇主都會買奎寧給工人,以確保生產力;英國政府甚至供給願意移民印度者免費的奎寧,使得直到印度第一次獨立戰爭前,許多英國人可以為了奎寧而移民。事實上,若沒有奎寧,英國人根本不可能在十九世紀於奈及利亞建立殖民地:當時每千名到非洲的白人就有350-800位因為瘧疾而喪命,因此非洲被稱為「白人的墳墓」。由此可知,這看起來不怎麼起眼的一棵樹,可影響了許多國家的命運;如果當年那些印地安人知道金雞納對歐洲人在全球殖民的影響,是否還會教導耶穌會教士使用它呢?

瘧疾那麼可怕,卻也曾經被當作藥來使用喔!二十世紀初,德國的瓦格納-堯雷格發現梅毒螺旋體對熱敏感,於是他把瘧原蟲接種在末期梅毒病人身上,讓病人瘧疾發作發高熱個三、四次便可殺死瘧原蟲。接著在治療瘧疾就好。聽起來很不可置信,但在抗生素還沒有出現的年代,這個方法不但被採用,他也因此獲頒1927年諾貝爾生理醫學獎。

(本文經編輯後刊登於2017.4.18 國語日報科學版)


留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light