跳到主要內容

高溫如何造成番茄減產?

番茄的花。圖片來源:Wikipedia

有些農作物並不適合在亞熱帶與熱帶栽種,原產於中南美洲的番茄(Solanum lycopersicum)就是其中之一。番茄是溫帶作物,生長時最適宜的溫度是攝氏18度到32度之間,生育期最適溫度為攝氏15-26度。如果白天高於攝氏32度、夜間高於攝氏24度,番茄的花就會無法發育、果實也會無法成熟。

到底高溫對番茄的花產生什麼樣的影響呢?過去的觀察發現,主要的影響層面在雄蕊。最近的一項研究發現,高溫對番茄雄蕊與花粉的發育的影響,甚至還包括了基因的表現。

研究團隊為了了解到底高溫會對番茄花器的發育產生什麼影響,他們把番茄種在白天攝氏32度,晚上26度的環境下(CMH32)。在這個狀況下的番茄的花,大約有四分之一花藥之間出現空隙,並呈現扭曲、尖端變綠的型態(如下圖右上):

番茄的花藥在高溫下的型態。圖片來源:PLOS One
當白天的溫度提升到攝氏34度時,花藥畸形的比率由四分之一上昇到九成五左右。而花粉的萌發率,也由適宜溫度時的五成五下降到百分之五,到了攝氏34度時,幾乎沒有花粉萌發。但是耐熱品系的番茄(在本研究中使用了基改番茄)則不受高溫影響。

除了花藥的扭曲畸形外,研究團隊還觀察到,雄蕊靠近花藥的細胞出現了類似雌蕊中柱的型態,在花藥基部也觀察到類似胚珠的型態的結構。

由於植物花器的發育是由分為A、B、C三大類的同源基因(homeotic genes)主導,花萼由A類基因作用產生、花瓣由A類與B類基因共同作用產生,雄蕊由B與C類基因共同作用下所產生,而雌蕊則僅由C類基因作用產生;因此,研究團隊針對他們觀察到的雄蕊雌性化現象,偵測是否B類與C類的基因表現出了問題?

結果發現,原本只表現在雌蕊的基因,在高溫下也出現在雄蕊;另外,原本只表現在雌蕊,與胚珠發育相關的基因,在高溫下也可以在雄蕊中偵測到。而幾個對雄蕊發育很重要的B類基因,在高溫下在雄蕊中的表現量都下降了。

所以高溫會使番茄的B類基因表現下降,也使得原本只表現在雌蕊與胚珠的基因在雄蕊中表現出來;這是否是因為B類基因表現下降所造成的呢?研究團隊使用了干擾RNA(RNAi)將其中的一個B類基因的表現量壓低,結果發現,甚至不需要把溫度提高到攝氏32度!只需要在攝氏30度時,便可以觀察到B類基因表現量降低造成雄蕊雌性化的比例由一成二大幅提升到接近六成,同時花粉的萌發率也由三成六下降到完全沒有花粉萌發。

由過去的農業經驗,人們已經知道番茄並不是耐熱的作物;即使在亞洲蔬菜中心的收藏中,具有耐熱特性的種原也佔整體不到百分之一。過去也知道高溫主要影響番茄的花器發育,這篇研究讓大家進一步了解,高溫如何對番茄的花器發育造成影響。有意思的是,過去多年在育種上的努力,其實早已有非基改的耐熱品系,不知為何本篇作者並沒有使用這些耐熱品系之一進行比較,而是選用了基改品系?是否因為研究上比較方便的緣故?未來或許也可以看看在目前市面上的耐熱品系中,這些B類基因的表現在高溫下是否也不受影響,或許可以作為未來育種的參考。

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Amy Grant. Tomato Temperature Tolerance: Best Growing Temp For Tomatoes. Gardening Know How.

陳正次、盧淑芬、陳福全、黃永光。番茄種原蒐集及利用。2008 農業生技產業應用研討會。

特146台灣蔬菜郵票。中華郵政全球資訊網-郵票寶藏。

Florian Müller. High-Temperature-Induced Defects in Tomato (Solanum lycopersicum) Anther and Pollen Development Are Associated with Reduced Expression of B-Class Floral Patterning Genes. PLOS One. December 9, 2016 http://dx.doi.org/10.1371/journal.pone.0167614

留言

這個網誌中的熱門文章

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。
葉片是獲取能量的小尖兵
自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。
當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。
這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。
由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。
抽絲剝繭光系統的運作
在葉綠體的類囊體膜(stromal membrane)上,可以…

孔雀秋海棠的光合作用魔術

原產於馬來西亞雨林的孔雀秋海棠(Begonia pavonina),只有在光線極弱的狀況下葉片會出現藍色。當光線夠強的時候,葉片上的藍色就不會出現了。

因為這藍色是如此的美麗,使它得到了「孔雀秋海棠」(peacock begonia)的美名。大家搶著種它,想要看到那美麗的孔雀藍;但到底為什麼要出現這美麗的孔雀藍呢?

通常我們都認為,在葉片裡面除了葉綠素以外的光合色素,都是輔助色素:在光線不夠時,幫忙吸收更多光能;在光線太強時,把多餘的能量發散。所以孔雀秋海棠的孔雀藍,是否也是一種輔助色素呢?

之前的研究已經發現,這些孔雀藍,應該是來自於被稱為虹彩體(iridoplast)的一種色素體(plastid)。虹彩體位於葉片上表皮的細胞中,為葉綠體的變體。在最近的研究發現,這些虹彩體的類囊體(thylakoids)以一種不尋常的方式排列:每疊葉綠餅(grana)由三到四個類囊體組成,厚度約為40奈米;而一疊一疊的葉綠餅之間的距離約為100奈米。


一般的葉綠體,通常葉綠餅的排列是散亂的(如圖);孔雀秋海棠的虹彩體的葉綠餅卻排得如此整齊,有什麼作用呢?

研究團隊測量了20個虹彩體,發現它們的特殊構造賦予它們反射435~500奈米的光波的能力。這個波長正好就是藍光波段的最右邊,與綠光交界的位置。這就是為什麼孔雀秋海棠是藍色的原因吧!

不過,這些虹彩體不只是會反射藍光而已。研究團隊還發現,虹彩體讓孔雀秋海棠吸收較長波的綠光與紅光的能力提升了!這對孔雀秋海棠是非常重要的,因為它們通常在熱帶雨林的地面上生長。

在熱帶雨林裡,光線都被大樹給遮住了,使得地表的光線極弱。弱到怎樣的地步呢?大約是樹冠光線強度的百萬到千萬分之一喔!而且還不只是光線變弱而已,因為雨林中的大樹們把進行光合作用所需的兩個主要波段的光(460奈米與680奈米)都吸收得差不多了,在這樣的環境下,孔雀秋海棠如果不發展出吸收一點綠光的本事,還真的會混不下去。

事實上,因為這些特殊的構造,虹彩體比一般的葉綠體進行光合作用的效率更高。研究團隊藉著測量葉綠體的螢光(葉綠體進行光合作用時,一部份的葉綠素會把吸收的光以暗紅色的螢光發射出去;所以可以藉著測量螢光了解植物進行光合作用的效率)發現,虹彩體進行光合作用的效率,比一般的葉綠體都好。不過,當光線變強的時候,虹彩體的效率就沒有那麼好了;這或許就是為何,當我們把孔雀秋海棠種在光線…

【原來作物有故事】世界最大的草本植物 香蕉

作者 葉綠舒(慈濟大學生命科學系助理教授)、王奕盛、梁丞志(慈濟高中)

香蕉(Musa x paradisiaca),在生活中隨處可見的一種水果,吃起來鬆軟香甜,大人小孩都喜愛。也因此,香蕉在台灣,曾經為我們帶來了高達一年一億美元的外匯,這為我們帶來龐大利益的水果,又是如何進入台灣呢?讓我們一起來了解香蕉這個水果吧!

香蕉在台灣又稱甘蕉、芎蕉、芽蕉、弓蕉,為多年生草本植物,也是世界上最大的草本植物。我們現在吃的香蕉稱為華蕉,是小果野蕉的三倍體,它在台灣被稱為「北蕉」,應該是因為兩百多年前從大陸華南廣東、福建地區引進時,由於從北部基隆港引入,就得到這個名字了。目前全世界有135個國家栽種香蕉,全世界生產的香蕉有15%供外銷。

香蕉最早可能是在東南亞與巴布亞紐幾內亞馴化,考古發現可以追溯到公元前五千年。究竟是何時傳入台灣有很多不同的說法,可能是在200多年前來自福建,到了日治時代,由於日本人愛吃香蕉,在台灣各地試種,發現中南部最適合種香蕉;因此主要產地集中在中南部地區,尤其在高雄市旗山區最多。旗山區曾被稱為「香蕉王國」,在1907年已有香蕉外銷日本;到了1967年(民國56年),旗山出產的香蕉佔全國總產量的58%,逼近全國出口值的十分之一,成為當時台灣的主要經濟命脈之一。後來因為不敵菲律賓與中美洲各國的競爭,目前主要提供國內食用。

美洲的香蕉主要由中美洲國家進口,但是出口香蕉的利益為少數公司所把持;公司為了自己的利益,要求農民使用危險的農藥處理香蕉,使得中美洲農民的健康被殘害,甚至無法生育!隨著公平貿易興起,農民不需要再使用危險的農藥,收入也提高了不少,生活也獲得改善。


雖然我們目前食用的香蕉主要是華蕉,但是在1950年代時全世界主要的香蕉卻是被暱稱為『大麥克』的大米七香蕉。為何大米七香蕉會被華蕉給取代呢?因為當時黃葉病在全世界大流行,由於栽培用的香蕉都是三倍體,只能以無性生殖的方式繁殖;無性生殖的好處是所有的香蕉口味都是一樣的,但是壞處就是一旦有病蟲害出現,因為所有的香蕉都是一樣的,感染便如野火燎原一般地散播開來!眼看著全世界的香蕉產業就要不保,還好當時發現華蕉對黃葉病有抵抗力,於是農民紛紛改種華蕉,華蕉便一躍而成世界香蕉的主要品系了。


除了華蕉以外,在台灣我們還可以買到芭蕉、粉蕉、紅皮蕉(俗稱蘋果香蕉)其他不同的蕉類水果。在台灣,大部分的香蕉都是生吃;不過在世…