跳到主要內容

【原來作物有故事】天然橡膠 影響近現代中國命運

製作天然橡膠要先收集橡膠樹的乳汁。
圖片來源:Wiki

生活中的橡膠

有一種東西,每天都會用到,但是用的人卻沒感覺,它是什麼?

答案是:橡膠!在我們的生活裡少不了橡膠,不管你是騎單車、坐公車還是轎車,這些交通工具的輪胎都是橡膠作的。能想像沒有橡膠輪子的交通工具嗎?

對我們這麼重要的橡膠,來自於巴西橡膠樹的乳汁。橡膠樹原產於南美洲的亞馬遜雨林,當我們割破它的樹皮時,乳汁便湧出,等它凝結後就是天然橡膠了。

中美洲的原住民們很早就懂得使用橡膠。他們會用橡膠製作皮球、舉辦足球賽。不過,因為當時沒有製作空心橡膠球的技術,那時候的皮球大概有四公斤重喔!馬雅人熱愛足球,每個村落都有足球隊,經常舉辦比賽。當時足球的規定與現在不大一樣,雖然叫足球,但是只能以手肘拐、用腰挺擊、抬起膝蓋,可不能用腳踢喔!遇到重大節日或慶典時,一定會舉辦足球賽,失敗的隊伍隊長就要獻出生命,以頭顱來祭祀神靈。

除了足球,當地的原住民也會用橡膠製作雨衣和雨鞋,但是天然橡膠很容易氧化,大概一兩天就分解了;直到1839年美國固特異發明了硫化法,橡膠才變得堅固耐用。固特異雖然發明了硫化法,卻因為不懂得申請專利,並沒有得到利益;後代的人為了紀念他的貢獻,將輪胎公司以他的名字命名。

在還沒有橡膠輪胎之前,我們的輪胎是以木頭包著鐵製作的,一點也不吸震,使當時的人一講到要出門旅行就害怕。等到橡膠輪胎發明了以後,早期還是實心的,吸震力雖然比木頭輪胎好,但要到1888年,愛爾蘭的登祿普發明充氣輪胎以後,真正吸震力強的輪胎才出現。充氣輪胎大大的增加了旅行的舒適度,從此大家就不會那麼害怕旅行了。

橡膠樹的乳膠是白的,為什麼輪胎是黑的呢?原來是因為英國的橡膠公司Silvertown的馬達技師,為了方便識別不同種類的輪胎,在橡膠中加入碳粉,沒想到竟使輪胎的耐磨耗性提升十倍以上。從此以後,輪胎就變成黑的囉!

橡膠如何進入人類歷史

地理大發現以後,歐洲人發現了橡膠;在硫化法發明之後,橡膠的重要性便直線上昇。等到1908年福特T型車的量產,更使得橡膠工業欣欣向榮。當時只要宣稱自己要開設橡膠公司,民眾就會蜂擁而上認購股票,這股橡膠熱甚至還燒到當時的中國呢!當時世界上有三分之一的橡膠公司開在上海,而中國的民間總計投資了一半的國家年收入在橡膠上。不幸的是,由於英國已經在十九世紀末取得橡膠樹的種源,並發展出種植的方法,大量在新加坡與馬來西亞種植,等到1910年馬來西亞開始大量生產橡膠以後,全球橡膠價格立刻崩盤,投資人也血本無歸了!

由於中國投資在橡膠上的資金,有一部份是來自於挪用民間投資鐵路的公款,為了善後,清政府請了盛宣懷來處理,但因為四川的民眾無法同意政府的條件,引發了「保路運動」,造成一連串的動亂與鎮壓,而中華民國就在這一片動亂中誕生了。由於馬來西亞出產的橡膠很多,橡膠的價格在這次崩盤後,便一直都維持在低廉的價格;加上兩次世界大戰刺激了人造橡膠的發明,也讓天然橡膠的價格再也無法再回到二十世紀初的高價了。

英國政府為了在馬來西亞種植橡膠,便允許由中國招聘來開採錫礦的契約工留在馬來西亞。這些華人在當地安家落戶,成了現在馬來西亞的第二大族群;而被偷走種源的巴西,從此橡膠業大幅衰退,由市佔率98%降到5%,當年長著野生橡膠樹的雨林,如今大多改為畜牧用途了。

小小的橡膠,影響了中國、馬來西亞與巴西三個國家,真的也很神奇呢!


(本文編輯後刊登於2017.1.17國語日報科學版)
圖片來源:國語日報科學版

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light