跳到主要內容

【原來作物有故事】玉米與美洲文明

冬天來一根熱騰騰的水煮玉米或烤玉米、看電影時買一大包熱呼呼的爆米花,玉米雖然不是我們的主食,但也溫暖了我們的腸胃、增加我們生活的樂趣。

生活中,玉米以各種型態出現在我們面前。除了早期的白玉米、後來黃色的甜玉米以及現在可以做沙拉吃的水果玉米之外,玉米還以其他我們不容易留意到的型態出現:高果糖糖漿,以及動物的肉。

高果糖糖漿是在1960年代發明的。用酵素把玉米澱粉裡的葡萄糖轉為果糖後,玉米澱粉就成了高果糖糖漿。因為味道爽口又使用方便,它大量出現在飲料裡, 也造成了我們的肥胖問題。

很難想像,動物的肉裡面有玉米!那是因為,玉米是動物飼料的原料之一,就算你不喜歡吃玉米,只要你吃肉,還是會間接的吃到玉米喔!也就是因為這樣,玉米是世界產量第一的農作物呢!根據聯合國農糧署的資料,每年生產的玉米超過99%是給動物吃的,人吃的只佔0.75%。

在台灣,我們喜歡單色的玉米;但是美洲的原住民們卻喜歡雜色的玉米。雜色玉米其實是玉米基因體裡面的「跳躍基因」(transponson)造成的;所以沒有兩根雜色玉米的花樣是完全相同的。這個現象一直沒有人去研究,直到1940-1950年,美國的芭芭拉•麥克林托克(Barbara McClintock,1902-1992)博士解出了這個謎題之後,大家才知道原來有些基因是可以在基因體上移動的。

中南美洲的原住民可都是以玉米為主食的。他們大約在公元五千年前開始種玉米,到公元一千五百年前玉米就已經是現在的樣子了。不過,雖然玉米造就了馬雅、阿茲特克與印加文明,但由於它無法自然播種,也限制了這些文明的發展。

雖然玉米無法自然播種,但它的祖先--大芻草—是可以自然播種的喔!玉米可以說是被人類改變最多的農作物了,從比玉米筍還要小、具有堅硬種皮的大芻草,到長達二三十公分、香甜可口的甜玉米,若不說明,沒有人會相信他們是一家人呢!

上:大芻草,中:大芻草與現代玉米的混種,下:現代玉米。
圖片來源:Wiki

玉米在美洲原住民的重要性,可以由印加文明中的大地之母(Pachamama)看出來。大地之母有兩個化身,一個是馬鈴薯女神(Axomama),另一個就是玉米女神(Saramama)。美洲原住民也發現了爆米花:有些品系的玉米,因為澱粉分佈的位置,使得他們的穀粒在加熱後會爆,由於他們崇敬玉米,於是爆米花也用來在祭典裡祭神。

但是,等到歐洲人到了新大陸,看到了玉米,一開始卻把它當作觀賞植物;後來又認為它的營養價值不如小麥,只適合給豬吃。不過,由於它生長快、產量大,很快南歐的義大利、西班牙等地,就開始有人以玉米為主食。

但是,由於歐洲人不懂得怎麼樣正確的處理玉米(將玉米泡在草木灰或石灰製成的鹼水裡加熱,以釋出維生素B3),於是,許多吃玉米的窮人都因為維生素B3缺乏而得了糙皮病;因為當地的醫生發現,得糙皮病的人很多都是以玉米為主食,於是就認為是玉米有問題!還好後來的科學研究還了玉米清白,不然還真是冤枉呢!

(本文編輯後發表於2016.10.18國語日報科學版)


留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light