跳到主要內容

阿拉斯加之死與刀豆氨酸(L-canavanine)

為了不被惡客入侵,植物都有內建的防禦系統。不同的植物有不同的防禦系統,有些植物讓自己變得很難嚼(如合成木質素),有些植物讓自己有噁心的味道,有些植物則更狠,乾脆下毒。

植物下毒的手法也五花八門,像苦杏仁含有苦杏仁苷(amygdalin),對植物本身無害;但人類的消化系統裡面有β葡糖苷酶(β-glucosidase),會將苦杏仁苷上面的氰根釋出,產生氰化氫,於是我們就中毒了。「後宮甄嬛傳」裡面的安陵容,最後就是服食苦杏仁而死的。

苦杏仁的毒性算是快的,有些植物下毒的手法比較慢,吃下去的時候不會馬上死亡,而是過個幾小時、一兩天才死。例如,有些豆科植物會合成刀豆氨酸(下圖上之Cana.,L-canavanine),它的結構與精氨酸(下圖下之Argi.,L-arginine)非常相似,只有在紅色標示的地方有不同。由於它們這麼相像,動物吃了它以後,細胞的轉譯系統(translation)會把刀豆氨酸當作精氨酸加入自己的蛋白質上面。

刀豆氨酸(Cana.)與精氨酸(Argi.)。圖片來源:Wikipedia
刀豆氨酸加上去了以後,會發生什麼事呢?雖然它跟精氨酸很像,但還是有那麼一點不像,而精氨酸在生物體的pH值下帶有正電荷,使得它經常出現在許多酵素的催化中心、以及蛋白質的活性位置上。當精氨酸被刀豆氨酸取代後,這些蛋白質無法執行正常的功能,最後造成的結果就是---中毒而死。

如果看過電影「阿拉斯加之死」(Into the Wild)的讀者,應該知道在1992年,24歲的麥肯迪尼斯(Chris McCandless)帶著少量的的食物和裝備徒步進入阿拉斯加荒野地帶,靠著獵捕野生動物以及採集植物生活了119天,直到被獵人發現陳屍在阿拉斯加迪納利國家公園荒野中的一部廢棄巴士裡的故事。

究竟麥肯迪尼斯是餓死的還是吃了不該吃的東西,直到2015年的一篇研究才揭曉:他可能是吃了山岩黃芪(Hedysarum alpinum)的種子而死於刀豆氨酸中毒。

山岩黃芪。圖片來源:Wikipedia
山岩黃芪生長於北半球的溫帶與寒帶氣候區,當地的熊、野牛、麋鹿等動物都會吃它的軸根。當地的居民把山岩黃芪稱為野馬鈴薯(wild potato),將它的軸根生吃、水煮、烤熟或油炸。據說生吃的口感很像胡蘿蔔。

雖然它的軸根可食,但是種子裡面卻含有刀豆氨酸。這是植物為了避免動物採食它的種子,所演化出來的策略。雖然看起來好像不大合理(應該要演化出吃了馬上死掉的才更有效),但從長遠的演化角度看來,還是可以篩選掉喜歡吃它的種子的動物,所以也算是一種有效的防禦策略。

雖然這防禦策略對其他動物有效,對人就不見得有用了。由於過去對這種植物相關的資訊不夠充沛,使得麥肯迪尼斯明明對了圖鑑,卻還是錯誤地吃下了有毒的種子而死。

不過,菸草夜蛾(Heliothis virescens)已經演化出了對付刀豆氨酸的方法:菸草夜蛾有特殊的精氨酸-tRNA連接酶(Arginine-tRNA ligase),讓它可以徹底預防刀豆氨酸加到自己的蛋白質裡面去。精氨酸-tRNA連接酶負責將精氨酸連接到tRNA上,接著轉譯的時候,只要帶有氨基酸的tRNA的反密碼,與信息RNA(mRNA)上的密碼對上了,帶有氨基酸的tRNA上面的氨基酸,就會被連接到正在合成的蛋白質鏈上。大部分的生物(包括人)的精氨酸-tRNA連接酶都無法區別精氨酸與刀豆氨酸的差別但是菸草夜蛾的卻可以,於是牠們得以大口咀嚼那些含有刀豆氨酸的豆科植物,都不用擔心別人會跟牠們搶食了。

類似的策略也可在帝王斑蝶(Danaus plexippus)與牠的食草馬利筋(milkweed,Asclepias curassavica):馬利筋因為有毒,使得大部分的動物都不敢吃它;但帝王斑蝶不但可以不被毒死,還可以將馬利筋的毒素儲存在體內,使得其他生物也不敢吃帝王斑蝶。只能說大自然真的很奇妙啊!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Jon Krakauer et. al., 2015. Presence of L-Canavanine in Hedysarum alpinum Seeds and Its Potential Role in the Death of Chris McCandless. WILDERNESS & ENVIRONMENTAL MEDICINE, 26, 36–42

2016/5/11.The News Lens 關鍵評論。【電影冷知識】必須敬畏的真兇——《阿拉斯加之死》謎題破解

Wikipedia. Hedysarum alpinum. Canavanine. Arginine.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N