跳到主要內容

植物是地球的能量工廠


地球上最重要的反應應該就是光合作用(photosynthesis)了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。

葉片是獲取能量的小尖兵

自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。

當時序慢慢進入秋天時,植物體內可藉由光敏素(phytochrome)感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體(dimer),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子(phytochromobillin)。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。

這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。

由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統(photosystem)。

抽絲剝繭光系統的運作

在葉綠體的類囊體膜(stromal membrane)上,可以很容易的找到光系統。高等植物具有兩種光系統,我們稱為光系統I與光系統II。不論是哪一種,都與它們的細菌祖先(綠硫細菌以及紫色細菌)有相當程度的相似。光系統I主要吸收700奈米的偏紅外光,光系統II主要吸收680奈米的紅光,將光能轉換為碳水化合物(化學能)。

光系統設計得極為精巧,以兩個葉綠素a為中心,許多蛋白質與其他色素(主要為葉綠素aβ胡蘿蔔素)圍繞在旁。這些色素僅有少數直接參與光反應(light reaction),大部分則協助中心的兩個葉綠素a收集光能。以藍綠菌的光系統I為例,128個色素分子中,協助收集光能的分子就有112個,其中90個是葉綠素a22個是類胡蘿蔔素。
 
葉綠體的構造(左)。圖片來源:Wiki
為何光系統必須有這麼多協助光能的分子,主要有兩個原因:一、光反應傳導的速度,遠大於個別葉綠素被太陽所發出的光子擊中的頻率;二、葉綠素在植物葉片中並非均勻分佈,而是被關在葉綠體中。

光反應的傳導速度非常快速。由兩個葉綠素與蛋白質構成的反應中心,在接收到光能後,大約在數個飛秒(fs10-12秒)內就將電子傳遞給下一個成員。大部分的電子傳遞都是在幾個微秒(μs10-6秒)之內完成,即使是最慢的步驟——由質體醌(plastoquinone)到細胞色素b6f複合體──也只需要幾個毫秒(ms10-3秒)。但即使在日正當中時,一個葉綠素每秒最多只會被光子打中幾次。因此,協助吸收光能的色素分子的存在是必要的,否則位於反應中心的兩個葉綠素a必然會長期處在閒置的狀態中。

由於葉綠素被關在葉綠體內,使得每個植物細胞一定會有一些區域是沒有被光合色素覆蓋到的。雖然在理論上,若能將整個植物細胞蓋滿葉綠體,應該可以吸收到99.999%的光能;但如此一來,由於葉綠體形狀並不規則,必然會有一些葉綠體相互重疊,這意味著某些葉綠體的一部份構造是無法產生能量的。對自營生物來說,每個器官、組織、胞器,除了需要消耗寶貴的能量去製造以外,也需要定期汰舊換新其中的老廢零組件,而汰舊換新同樣要消耗能量。因此,要自營生物消耗能量去維持一個無法執行功能的「元件」無疑是不划算的。加上植物細胞中也需要提供空間給其他重要的胞器(如細胞核、粒線體等),所以沒有任何一顆植物細胞會為了要保證可以收集到99.999%的光能而產生過量的葉綠體;只需要提升葉綠體吸收光能的整體效率(加入多一點色素協助捕捉光能)就好。

在光系統中,除了葉綠素a以外,還有類胡蘿蔔素的加入。與葉綠素a只吸收藍光、紅光不同,類胡蘿蔔素主要吸收的光波是較偏綠的藍光與綠光,如此一來便擴大了植物可以利用的光能。再者,光系統還有捕光複合體(light harvesting complex),它除了含有更多的類胡蘿蔔素以外,還有葉綠素b。因為在構造上與葉綠素a的微小差別,使得葉綠素b吸收400~500奈米波長的光較葉綠素a更有效率。

兩個光系統都有屬於自己的捕光複合體:捕光複合體與光系統連接,以擴大光系統收集光能的能力。不過,捕光複合體與光系統之間的連接並不都是密不可分的。捕光複合體I與光系統I是不分開的,但是捕光複合體II與光系統II之間則存在著動態連結的關係。當光線充足時,與光系統II連接的捕光複合體II便離開,以降低植物因為吸收過多光能所產生的傷害;當光線不足時,捕光複合體II再度回到與光系統II連接的狀態,使光系統II可以收集更多的光能。

這一切都是藉著監控葉綠體內質體醌的氧化還原狀態來完成。

除此之外,由於葉綠體位於葉片的葉肉細胞中,一棵植物的葉片如何安排,也會影響到整體捕捉光能、產出化學能(醣類)的效率。互相重疊的葉片意味著有一部份的葉片被遮蔽而無法進行光合作用,因此植物必須精心安排新的葉片生長的位置,久而久之,便有了葉序(phyllotaxy),不同的植物有自己特定的葉片排列方式。

落葉是延續生存的招數

但是,再如何精心安排,最早成熟的葉片,可以接收到的光能免不了會隨著新葉的增多、壯大與成熟而逐漸減少;等到這片葉片能貢獻的能量已經不足以維持這片葉片時, 也就意味著它要被淘汰:走向衰老。

落葉樹每年的迎新去舊看似消耗能源,但化石證據卻發現,正是這迎新去舊的生存形式,使得落葉樹在白堊紀古近紀界線(Cretaceous-Paleogene boundary)的大滅絕事件後脫穎而出,成為地表上的強勢植物。畢竟在秋冬停止生長、進入休眠,雖然相當經濟,但對比於四季長青的常綠樹來說,卻是一種競爭上的劣勢。由於能量來自於遠處上方的太陽,所有的植物無不想方設法讓自己成為左鄰右舍中最高的那棵植物,以便吸收最多的光能;因此,冬季停止生長,在競爭上並非享有絕對的優勢。

但是,在白堊紀古近紀界線的隕石撞擊與火山爆發發生後,隨之而來的灰塵遮蔽了日光,造成植物無法進行光合作用,這時候,常綠樹的優勢反而成了劣勢,因為無法休眠又沒有能量來源,常綠樹在殘存的養分耗盡後便一一滅絕;而落葉樹反因為有休眠的機制,得以熬過漫長的冬季,即便這個「大滅絕冬季」,與其它的冬季相較之下,似乎是特別的漫長。如今地球上眾多落葉樹的生長更迭,也在四季之中各自形成一幅美景。

★延伸閱讀★
1.      Saenger, W., Jordan, P. and Krauß, N., The assembly of protein subunits and cofactors in photosystem I., Current Opinion in Structural Biology, Vol.12: 244–254, 2014.
2.      Buchanan, B.B., Gruissem, W. and Jones, R.L., Biochemistry and Molecular Biology of Plants, 2nd edition.
3.       Blonder, B., Royer, D.L., Johnson, K. R. et al., Plant Ecological Strategies Shift Across the Cretaceous–Paleogene Boundary, PLoS Biology, Vol. 12(9), 2014.


 (本文刊載於科學月刊2016年四月號

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light