跳到主要內容

發表文章

目前顯示的是 8月, 2016的文章

四物、八珍、十全大補湯真的是催生子宮肌瘤的利器嗎?

在2016年8月23日,一篇名為「親愛的,拜託速速遠離妳的四物、八珍、十全大補湯好嗎?」的文章,震驚了全台灣兩千多萬人。 在文章中,提到的「四物、八珍、十全大補湯」原本就是很多家庭會幫自己家中的女性在經期後補身用的方劑,原來竟是「催生子宮肌瘤,要多大就多大」的「旗艦版的肌瘤催生工具」? 當時筆者看了覺得有點驚訝,如果是這樣,怎不見任何相關的文獻說明呢?而且在文中也只提到「當歸」可能有這個效果,但是沒有人會只吃當歸一味中藥吧? 幸而很快就有許多中醫師出來澄清了,而 鄭宏足醫師臉書 上清清楚楚點出這篇文章的毛病在哪裡,筆者徵求鄭醫師的同意在這裡全文轉貼(藍字部分)同時標上重點給各位參考: 20160826, 專業人士(兼具藥師,中醫師,藥學博士)的公開言論千萬要謹言慎行,藉由聳動的恫嚇性言論博取媒體版面,造成全台譁然後,成就了自己的高知名度,卻傷害了中醫藥的專業,事後遭到中醫藥界嚴正抗議後,不思反省,不但沒有嚴正道歉,卻雲淡風輕、船過水無痕,想要避重就輕的淡化處理,讓身為同樣具備專業人士的我(兼具藥師、中醫師、工學博士),全然無法接受,茲就洪醫師的文章,提出幾點謬誤之處供大家參考: 一、標題切中民心,內文的說明卻充滿聳動與恐嚇之能事: 四物、八珍、十全大補湯,是民間非常常用的經後、產後、術後會自己去中藥店抓的藥方,也是夜市銷路很好的藥燉湯底,補氣補血功能無庸置疑,但是 個人體質若不適合服用,會有一些副作用,須找專業中醫師診治開方才是正確的方式 。洪醫師的錯誤在於以「可怕」來形容這種普遍的行為。甚至說出服用四物、八珍、十全大補湯後「保證可以讓子宮肌瘤、子宮腺肌症、卵巢囊腫等等無限發展,想多大就多大。我常常說十全大補湯簡直是旗艦版的肌瘤催生工具。」字裡行間充滿聳動與恐嚇的意涵。 二、專業人士論述一件事情,尤須引用來源出處,何況指控一件民間普遍行之有年的行為方式,卻毫無引用參考資料與文獻: 至少文中我打星號的地方是必須引用參考文獻 「十全大補湯,補血補氣的功能大增,保證可以讓子宮肌瘤、子宮腺肌症、卵巢囊腫等等無限發展,想多大就多大***。我常常說十全大補湯簡直是旗艦版的肌瘤催生工具***」 「因為妳所知道的這些子宮卵巢的腫瘤腺肌症啦都是血管高度增生的組織***,它們搶養分的能力絕對遠遠超出妳的正常子宮內膜***,是不會補到妳想補的地

阿拉斯加之死與刀豆氨酸(L-canavanine)

為了不被惡客入侵,植物都有內建的防禦系統。不同的植物有不同的防禦系統,有些植物讓自己變得很難嚼(如合成木質素),有些植物讓自己有噁心的味道,有些植物則更狠,乾脆下毒。 植物下毒的手法也五花八門,像苦杏仁含有苦杏仁苷(amygdalin),對植物本身無害;但人類的消化系統裡面有β葡糖苷酶(β-glucosidase),會將苦杏仁苷上面的氰根釋出,產生氰化氫,於是我們就中毒了。「後宮甄嬛傳」裡面的安陵容,最後就是服食苦杏仁而死的。 苦杏仁的毒性算是快的,有些植物下毒的手法比較慢,吃下去的時候不會馬上死亡,而是過個幾小時、一兩天才死。例如,有些豆科植物會合成刀豆氨酸(下圖上之Cana.,L-canavanine),它的結構與精氨酸(下圖下之Argi.,L-arginine)非常相似,只有在紅色標示的地方有不同。由於它們這麼相像,動物吃了它以後,細胞的轉譯系統(translation)會把刀豆氨酸當作精氨酸加入自己的蛋白質上面。 刀豆氨酸(Cana.)與精氨酸(Argi.)。圖片來源: Wikipedia 刀豆氨酸加上去了以後,會發生什麼事呢?雖然它跟精氨酸很像,但還是有那麼一點不像,而精氨酸在生物體的pH值下帶有正電荷,使得它經常出現在許多酵素的催化中心、以及蛋白質的活性位置上。當精氨酸被刀豆氨酸取代後,這些蛋白質無法執行正常的功能,最後造成的結果就是---中毒而死。 如果看過電影「阿拉斯加之死」(Into the Wild)的讀者,應該知道在1992年,24歲的麥肯迪尼斯(Chris McCandless)帶著少量的的食物和裝備徒步進入阿拉斯加荒野地帶,靠著獵捕野生動物以及採集植物生活了119天,直到被獵人發現陳屍在阿拉斯加迪納利國家公園荒野中的一部廢棄巴士裡的故事。 究竟麥肯迪尼斯是餓死的還是吃了不該吃的東西,直到2015年的一篇研究才揭曉:他可能是吃了山岩黃芪( Hedysarum alpinum )的種子而死於刀豆氨酸中毒。 山岩黃芪。圖片來源: Wikipedia 山岩黃芪生長於北半球的溫帶與寒帶氣候區,當地的熊、野牛、麋鹿等動物都會吃它的軸根。當地的居民把山岩黃芪稱為野馬鈴薯(wild potato),將它的軸根生吃、水煮、烤熟或油炸。據說生吃的口感很像胡蘿蔔。 雖然它的軸根可食,但是種子裡面卻含有刀豆氨酸。這是植物

從邱園報告看維管束植物

全世界到底有多少種維管束植物呢?邱園(the Royal Botanical Gardens, Kew)科學家們在比對許多網站、搜尋大量文獻後,終於在2016年釋出了第一份植物調查報告。 根據這份報告,世界上有三十九萬零九百種維管束植物,其中種子植物佔了百分之九十四。雖然看起來好像不少,但是有21%的植物面臨絕種的威脅,失去棲地(包括紅樹林、森林)、病蟲害、入侵植物都是影響植物生存的重要原因。 這麼多的維管束植物,人類只用了不到十分之一;在這十分之一裡面,有將近六成是藥用、接近兩成當作食物的、三成六作為材料。 這些植物裡面,有多少是有毒的呢?其實只有百分之八,還不到一成。不過,有些本來有毒的植物,在人類的農業行為中,找到了去除毒性的方法、或是培育出不含毒素的品種;但它們的野生兄弟們還是有毒的喔!例如馬鈴薯、苦杏仁就是很好的例子。 隨著近年生物科技的發展,植物的分類已經由過去以型態(尤其是花的型態)為主的分類系統,開始朝著分子分類學的方向發展。為了分類,科學家們會看兩個位於葉綠體的基因體上的基因。利用這些基因進行分類,可以幫助分類學家們弄清楚哪些植物其實在分類上是兄弟姊妹、而哪些可能只是遠房親戚。 除了失去棲地、病蟲害、入侵植物以外,有超過十分之一的植物生長區域很容易受到氣候變遷的影響,由於植物要傳播幾乎都要藉助其他的生物或水力、風力等,使得植物們在面對氣候變遷時特別脆弱。 有特別脆弱的植物,有沒有特別強悍的植物呢?能被歸類在強悍的植物,大概就是入侵植物吧!在這份報告裡提到,全世界總共有4,979種入侵植物,包括了我們很熟悉的小花蔓澤蘭( Mikania micrantha )。如果把這些入侵植物以科來統計,最強悍的科應該是菊科,第二名是禾本科,第三名是豆科。每年全世界總共要消耗5%的GDP來處理入侵植物所所產生的問題呢!筆者覺得,邱園的這個入侵植物清單,世界各國政府真的要好好收藏,以後每次打算引進某些植物時,都要核對一下喔。 邱園的科學家們說,未來這個報告會每年更新一次,希望可以讓這個報告越來越完整。對於全世界的植物愛好者來說,這真的是個好消息呢! (本文改編後刊載於 2016/7/23國語日報科學版 ) 圖片來源: 國語日報科學版

植物的記憶與普利昂蛋白(prion)

圖片來源: wiki 提到普利昂蛋白(prion),大家第一個想到的就是狂牛症。由於它們在1982年被發現會導致導致「狂牛症」與羊的搔癢症(Scrapie),使得大家聞普利昂蛋白而色變。但是,普利昂蛋白並不都是壞的喔!由於普利昂蛋白會自行複製,使得它很適合作為代代相傳的分子。有好些轉錄或轉譯調節蛋白以及RNA加工蛋白都有普利昂蛋白的結構域(prion domains,PrDs)在內。 許多植物需要「對的」光週期持續一段時間後才能啓動開花程序。但是,有些植物只需要暴露在「對的」光週期一兩天,有些植物則需要一兩週或甚至一個月都是「對的」光週期,才能啟動開花程序。究竟植物是如何記得那「對的」光週期持續多久了呢?而它們又能記得這個資訊多久呢?不知道。目前的紀錄保持人是冬小麥:科學家們把經過冷處理後的冬小麥進行組織培養,長出的癒傷組織(callus)在培養為成株後,完全不需要春化處理(vernalization),便能在第一個春天就開花結果。這麼好的記憶,究竟是從哪裡來的? 最近的研究發現,植物或許也是透過具有類似普利昂蛋白質結構域的蛋白質,把這些資訊紀錄在植物細胞中。 由於植物對光週期的「記憶」超卓,因此來自麻省理工學院的研究團隊,嘗試著在擬南芥的基因體內尋找普利昂蛋白的蛋白質結構域。搜尋的結果一共找到475個含有普利昂蛋白結構域的基因:這些基因包括了轉錄調節蛋白、RNA連結蛋白、與RNA代謝相關的蛋白、與繁殖及發育相關的蛋白還有花朵發育相關的蛋白。其中,研究團隊挑選了LD(Luminidependens)、FPA(Flowering Locus PA)、FCA(Flowering Locus CA)與FY(Flowering Locus Y)這四個帶有普利昂蛋白質結構域的基因。 挑選這四個基因主要的原因,是因為它們都與開花相關。其中LD是個轉錄調節蛋白,而FPA與FCA則是RNA連結蛋白;至於FY則對於RNA的加工(RNA processing)有關。為了要測試它們是否具有類似於普利昂蛋白的特性,研究團隊將這四個蛋白在酵母菌( S. cerevisiae ,啤酒酵母)中進行了一連串的測試。之所以選擇在酵母菌裡面,而不是在植物中直接進行,是因為目前(類)普利昂蛋白在植物中的功能未明,因此要測試只能以酵母菌來進行測試。 在多年前,科學家們便發現,

玉米吃多了會得糙皮病(pellagra)?

玉米。圖片來源: Wikipedia 最近聽到有這麼一個網路謠言:玉米吃多了會得糙皮病(pellagra)。 這個謠言讓我覺得相當驚訝,玉米的確與糙皮病有關,但中間沒有因果關係。 我們先來看糙皮病。典型的糙皮病是因為飲食中缺乏維生素B 3 (菸鹼酸,niacin)導致,但也可以因為飲食中缺乏色氨酸(tryptophan)或賴氨酸(lysine)、或吃太多含有亮氨酸(leucine)的食物(如高粱 sorghum)引起。 菸鹼酸。圖片來源: Wikipedia 典型的糙皮病的成因,主要是由於維生素B 3 是合成細胞內重要的輔酶 NAD + 或 NADP + 所需。因為細胞內許多重要的氧化還原反應,都要靠這兩個輔酶幫忙;而合成這兩個輔酶的重要原料就是菸鹼酸。因此,當維生素B 3 缺乏時,所產生的影響是非常嚴重的。怎麼說呢?細胞內產生能量的反應:細胞呼吸(cellular respiration),涵蓋了醣解作用(glycolysis)、檸檬酸循環(克氏循環 citric acid cycle)與電子傳遞鏈(electron transport chain),其中醣解作用與檸檬酸循環都是氧化的反應,而氧化後所產生的電子大多交給這兩個輔酶之一的NAD + ,接著它再把電子交給電子傳遞鏈產生能量(ATP,腺嘌呤核苷三磷酸,如下圖)。 細胞呼吸作用。圖片來源:老葉 由於它是如此的重要,一旦維生素B 3 缺乏使它無法合成,所顯現出的症狀主要包括了三個「D」:腹瀉(diarrhea)、皮膚炎(dermatitis)與癡呆(dementia)。如果不及時提供維生素B 3 ,患者最後會死亡。 說了這麼多維生素B 3 的重要性,到底玉米跟它有什麼關係呢? 原來,最早發現糙皮病就是出現在以玉米為主食的地區。在1735年,西班牙的卡薩爾醫師(Dr. Gaspar Casal)注意到,在以玉米為主食的地區出現了一種病:病人的鎖骨與頸部之間出現了皮膚炎。他將這個病徵稱為卡薩爾項圈(Casal Collar)。而「糙皮病」(pellagra)這個名字得自於義大利Francesco Frapolli醫師,他把 pelle(皮膚)與 agra(酸)兩個字組合起來。 由於當時糙皮病在歐洲盛行率很高,而且幾乎都出現在以玉米為主食的地區,使得有些醫

世界維管束植物大盤點

全世界到底有多少種植物呢?在 科學家們 比對許多網站、搜尋大量文獻,刪除掉不同名但實為同種的植物後,邱園(the Royal Botanical Gardens, Kew)終於在今年釋出了第一份世界(維管束)植物調查報告。 根據這份報告,世界上有390,900種維管束植物,其中種子植物有369,000種,佔94.4%。這麼多的維管束植物,有多少種為人類所用了呢?根據文獻的紀錄,人類只用了31,128種,還不到十分之一(7.96%);其中最大宗,不意外就是藥用(17,810種,57.1%)。當作食物的植物則有5,538種(17.8%),而作為材料的則有11,365種(36.5%)。雖然我們常聽到「有毒植物」這個詞,但在這麼多為人類所用的植物裡面,只有2,503種是作為毒藥/毒素,還不到一成(8.04%)。 在2015年,全世界總共發現2,034種新植物。包括九十種海棠屬、十八種蕃薯屬(包括了蕃薯 Ipomoea batatas 的近親)、五種洋蔥屬以及一種 在臉書上發現的肉食植物 。中國、澳洲與巴西是過去十年提出最多新種的國家,中國提出了1,537種,澳洲提出了1,648種,而巴西則提出了2,200種。 為什麼會有不同名但實為同種的狀況呢?那是因為同一種植物在不同的時間、空間,被不同的人發現的關係。由於命名是根據生物的特徵,所以同一個植物會有不同的名字。這些分類上的同義詞(synonym),由於描述了生物的特徵,因此也會被保留下來;根據邱園的資料,平均每個植物有2.7個同義詞。 隨著近年生物科技的發展,植物的分類由過去以型態(尤其是花的型態)為主的分類系統,開始朝著分子分類學的方向發展。為了分類,目前已經有三分之一弱的維管束植物有部分的基因被定序(106,700種,28.92%);主要定序的基因在rbcL與/或matK上。這兩個基因都是葉綠體的基因,因為在不同的植物間高度保留而被用做分類上的依據。整個基因體完整的被解讀出來的植物,只有一百三十九種,還不到0.1%,而且大部分是農作物。由於氣候變遷造成農作物的產量與品質都受到影響,近年來各國的研究團隊紛紛在找尋農作物的野生種,並將之與現在的栽培種進行雜交,以培育出更能抗蟲、抗旱等特質的新品種,因此目前更重要的工作,應該是將農作物的野生種定序出來呢! 雖然看起來好像不少,但是有21%的植物面臨絕種的威脅

植物是地球的能量工廠

地球上最重要的反應應該就是光合作用( photosynthesis )了,就如植物的頂芽生長點是地球上最重要的組織一般。這是由於地球上的異營生物無不依靠自營生物作為直接或間接的食物來源,而自營生物的養分幾乎都是由光合作用而來。 葉片是獲取能量的小尖兵 自營生物的器官衰老是非常複雜的機制。在秋天撿起一片地上的黃葉,與仍在樹梢上翠綠的葉子相比,會發現黃葉的重量較同等大小的綠葉輕很多;這是因為植物會將衰老葉片中剩餘的、可利用的物質分解後運回,提供其他組織再運用。不若異營生物,由於每一個器官、組織都需要由自己生產的能量來製造,因此自營生物在淘汰老廢器官與組織時,一定會將殘餘的養分盡可能的回收。汰舊換新對所有生物都是一整年的工作,但對於多年生的落葉樹來說,每年春秋二季會發生大規模的迎新去舊,是它們一年兩次的大工程。 當時序慢慢進入秋天時,植物體內可藉由光敏素( phytochrome )感應逐漸加長的黑夜。光敏素是由兩個多肽組成的雙體( dimer ),每個多肽有一千多個氨基酸那麼長,並加上一個色素分子( phytochromobillin )。光敏素將季節的信息送到頂芽,頂芽便開始進入休眠;其它的葉片啟動衰老機制、將可以回收的養分盡量回收之後,隨著連接葉柄與莖的薄壁細胞死亡,毫無生氣的葉片因自己重量的垂墜,被拉離開植株,飄落到地面。 這一切雖然看似與光合作用無關,但它卻是背後的影武者。在夏季的尾聲,隨著日照時間減少,植物能進行光合作用的時間縮短;同時,因為太陽的角度逐漸偏斜,在有限時間內,植物能捕捉到的光能也逐漸減少。以經濟的角度來看,光合自營生物此時若仍維持著龐大數量的葉片,並不是一種聰明的做法;於是有些樹木選擇將葉片中的養分回收儲存,同時降低所有的活動來過冬。等到冬去春來,可進行光合作用的時間變長了,加上太陽的角度逐漸轉正,植物以光敏素覺察到黑夜時間逐漸縮短,新芽便開始萌發,葉綠素的合成與葉綠體的發育,讓新生的葉片抹上了一層層的綠意。 由此可知,光合作用需要捕捉光能、以及將光能轉換為化學能的「用具」,並且,這些用具要能夠被恰當地放置在可以接收到足夠光能的地方。除了少數因為生活環境而必須修改基本設計的植物以外,絕大多數植物執行光合作用的主要部位是葉片;而葉片中用來捕捉光能的用具就是光系統( photosystem )。