跳到主要內容

含羞草會學習?

含羞草。圖片來源:wiki

動物可以透過反覆練習來學會一項技能,植物是否也有學習的能力呢?

要測試植物是否能學習,首先就會遇到一個問題:如何建立一個系統證明植物會學習。畢竟植物不是動物,身為動物的我們,要教導植物某一件事或許不難,但是要如何幫植物「考試」、確定它已經會了,這部分可真的不簡單。

來自澳洲的研究團隊,決定以含羞草(Mimosa pudica,the sensitive plant)為樣本進行測試。研究團隊做了一個植物的「大怒神」系統,可以讓含羞草在相同的短時間內往下垂直掉落15公分。當含羞草坐完「大怒神」以後,它的葉子會閉合一段時間再慢慢打開;等到它的葉子完全打開以後的5-10秒,再讓它坐一次「大怒神」。

這樣反覆在一天內進行60次(含羞草:我不要坐那麼多次大怒神啦!)以後,研究團隊發現含羞草的反應變小了。而且,在高光度與低光度下生長的含羞草,對於反覆刺激的反應明顯的不同;在低光度(每平方公尺每秒照射90微莫爾的光子)下的含羞草,在反覆刺激以後,很明顯的有反應變小的現象。

但是,這真的是學習行為嗎?會不會是含羞草被搖到彈性疲乏了?為了證明含羞草不是因為被搖到彈性疲乏,研究團隊設計了另一種刺激:「大地震」!將植物放在震盪器上面,以每分鐘250下的速度搖五秒。如果換另一種刺激,含羞草可以馬上做出反應;就顯示了它並不是彈性疲乏,而是對於同一種刺激的反覆出現,它習慣了、並決定不予理會。

實驗結果發現:坐過幾十次「大怒神」的含羞草,在換玩「大地震」以後,還是可以立即做出反應。這顯示了,含羞草真的有學習的能力唷!只是,為什麼在高光度下(每平方公尺每秒照射230微莫爾的光子)的含羞草在反覆刺激以後,反應不會明顯變小呢?

讓我們先想想含羞草為什麼要「羞」。我們都知道含羞草只要一碰,葉片就會閉合;如果碰觸的強度夠高,不只是葉片會閉合,連葉柄也會跟著下垂。碰觸的刺激意味著什麼呢?

在自然界,碰觸的刺激表示附近可能有吃草的動物開始「甲崩」。而閉合的葉片與下垂的葉柄,可以讓含羞草在食草動物的視覺範圍內消失(請參考下面兩張取自維基百科的圖)。

被碰觸之前的含羞草。圖片來源:Wiki
被碰觸之後的含羞草。圖片來源:Wiki
草不見了,吃草的動物當然就不會去吃它;所以含羞草藉著「害羞」的動作,可以減少自己被吃掉的機率。但是,葉片閉合同時也意味著進行光合作用的面積減少了。對植物來說,減少光合作用是非常不利的,所以過一段時間之後,如果沒有更多刺激,含羞草就會把葉片慢慢打開。

在高光度的狀況下,植物進行光合作用的速度當然比低光度的時候要快。在高光度的環境下,因為光合作用的產物已經足夠,對於持續的、重複的刺激,雖然可能是背景噪音,但也不妨做出反應,多少可以降低可能被吃的風險;而在低光度時,因為光合作用的產物還不大夠,所以對於可能是背景噪音的刺激,還是不予理會對自己的生存比較有利。

這個現象,在研究團隊將含羞草先放在高光度或低光度的環境下四週後,再更換光照條件時,看到的結果更能證明這一點。原先生長於低光度的含羞草,在改變為高光度後,一開始對重複的、持續的刺激的反應變得敏感;而由高光度移往低光度的組別,在一開始對刺激的反應也呈現敏感度降低的狀況。

所以,植物的確是有(一些)學習能力的喔!只是我們不知道怎麼測試而已!

後記:其實在「植物比你想的更聰明:植物智能的探索之旅」中有記載,在十八~十九世紀時,拉馬克(Jean-Baptiste Lamarck,1744-1829)與德堪多(Augustin Pyramus de Candolle,1778-1841)便已經發現含羞草會記得生活環境中的雜訊,並不予理會喔!有興趣的朋友們可以去找這本書來看喔!

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Gagliano M. et. al., 2014. Experience teaches plants to learn faster and forget slower in environmnts where it matters. Oecologia. 175:63-72

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light