跳到主要內容

回不去的陸生植物

大葉藻。圖片來源:wiki

提到海藻,你我大概免不了會想到紫菜、昆布之類。紫菜是兩種海藻(Nori,Pyropia yezoensisP. tenera),而昆布則是褐藻門海帶屬的海藻。誰會想到大葉藻(common eelgrass,Zostera marina)呢?

雖然大葉藻不能吃,但它本來卻是貨真價實的陸生植物。大葉藻是澤瀉目(Alismatales)的單子葉水生種子植物,分佈於北太平洋與北大西洋的淺海中。葉片有窄而長的葉子,大約是1.2公分寬、長可達一公尺。植物雌雄同株但異花。

被子植物大約在一億六千萬年前出現在地球上,它們原來都是陸生植物;但是不知為何,大葉藻選擇了回歸海洋。

當初由海裡跑到陸地上,陸生植物需要演化出全新的機制來適應陸地生活:如氣孔的產生、保護自己不乾死渴死/不受UV灼傷、水分運輸的機制、由陽光中找到更好的能量來源的能力、甚至還開始製造一些氣體分子來互相聯絡/招蜂引蝶/招徠打手等;當植物回歸海洋時,這些陸生植物特有的機制,是否會隨之消失呢?

結合了歐美的幾個頂尖的國家團隊,針對大葉藻以及紫萍(Spirodela polyrhiza)的基因體進行定序與比較,發現大葉藻在回歸海洋的過程中,失去了整組(!)的氣孔分化所需的基因;另外,與紫外光防護有關的基因也不見了。

由於只有少量的短波紫外光可以透過海水,因此失去紫外光防護的基因也是相當合理的;不過,大葉藻還失去了光敏素(phytochrome)喔!為什麼大葉藻不需要光敏素呢?原來,能透過海水的紅光與紅外光並不多,所以保留用來偵測它們的光敏素,好像意義也不大。不過,光系統I與II還是與陸生植物的相似,但是與光系統II合作的捕光複合體B族蛋白(LHCB)的數目變多了,推測應該是為了提升在低光度下的光能吸收效率。

對於淹沒在水下的植物,當然不需要氣孔來進行氣體交換;所以大葉藻就跟氣孔說「莎呦娜啦」啦!少了氣孔,接著有一些基因就可以跟著丟了!什麼基因呢?產生乙烯(ethylene)的基因、還有產生萜類(terpenes)的基因也不見了;想想也是很合理,既然都沒有氣孔了,產生氣體的賀爾蒙是要從哪裡釋放呢? 而萜類則包含了許多具有揮發性的化合物,植物合成它們來發散香味,吸引授粉的昆蟲等等;既然都已經成了水生植物了,也不會有昆蟲來採蜜授粉,當然就不需要合成萜類啦!相比於水稻有五十個合成萜類的基因,大葉藻只退化到剩兩個。

少了氣孔,除了不用合成氣體分子以外,還有意外的收穫,就是不再會有「病從口入」的問題了!陸生植物為了吸收大氣中的二氧化碳演化出了氣孔,但病原也得以由這些氣孔長驅直入。如今少了氣孔,病原菌沒那麼容易跑進來,負責抵禦外敵的防衛基因們,當然也可以裁員囉;以其中一類稱為NBS_LRR的基因為例,大葉藻只有44個,而紫萍有89個,其他陸生植物則有100-300個,就可以看出「病從口入」的威力了!

生活在陸地上要能耐乾,所以陸生植物都有角質(cutin)。生活在海水裡,到處都是水,是不是就不用擔心了呢?雖然到處都是水,但是海水含有3.5%的鹽,所以生活在海水裡不僅要防止脫水,還一定要能耐鹽;科學家們發現大葉藻有抗鹽的質子幫浦(H+-ATPase),細胞壁的果膠(pectin)甲基化程度降低、硫酸化多醣增加,這些都是大型海藻的生理特徵,使大葉藻更能適應海中環境、能夠耐鹽並避免脫水。

澤瀉目的水生植物的花粉都有外壁(exine),不過大葉藻的花粉卻沒有。或許是因為完全淹沒在水中的關係嗎?不過花粉沒有外壁是海藻共同的特徵。由於大葉藻的花已經退化到很簡單的型態(只有雄蕊與雌蕊),研究團隊也發現它的MADS-box基因已經減少到剩下50個。

大葉藻雖然不能吃(不好吃?)但是它提供了海中生物棲息的地方,也協助固碳、防止海岸侵蝕。在北太平洋與北大西洋,大葉藻生長的面積共有20萬平方公里,大約只比三分之一個法國小一點,有五個半台灣那麼大呢!在挪威,大葉藻會被拿來餵牛;筆者讀過當年住在格陵蘭的維京人(與挪威人同源)會用海藻餵牛,不知道是否都是同一種海藻呢?

從基因體的資料可以看到,生物改變自己來適應環境的能力真的很強;地球上所有的生物,大概只有人會改變環境來適應自己吧?

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

Yves Van de Peer et. al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016; DOI: 10.1038/nature16548

Alm, T. 2003. On the uses of Zostera marina, mainly in Norway. Economic Botany 57:4 640-45

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light