跳到主要內容

馬雅人使每株木瓜都能結果

木瓜。圖片來源:wiki

小時候常聽長輩說,木瓜(Carica papaya)有公有母,公的木瓜不會結果,所以只要砍到剩一株就好。那時候覺得真有意思,原來植物跟人一樣有性別。

長大以後卻發現,好像每株木瓜都能結果?那麼小時候長輩說的公母木瓜去哪裡了?筆者上網找資料,得到的結果是:木瓜的確有公母,不過栽培種的木瓜卻沒有公的,只有雌雄同體(hermaphrodite,約佔三分之二)與母的;野生的木瓜大約公母各半。

那麼,究竟栽培種的雌雄同體木瓜是怎麼來的?過去的研究發現,木瓜的性別確認,說像人也不像;怎麼說呢?原來木瓜的性別也是由Y染色體決定(跟人很像),但是跟人不像的點是,人的Y染色體比X小,但是木瓜的Y染色體比X長(1)。

那麼,雌雄同體的木瓜呢?雌雄同體木瓜的Y染色體被稱為Yh染色體,除掉一段有八千多個鹼基對(base-pair)的反轉位子(Ty3-gypsy retrotransposon)之外,Y染色體與Yh染色體在性別決定區域(在Y染色體稱為male-specific region,MSY 或是在Yh染色體稱為 hermaphrodite-specific region,HSY)非常相似(差距在0.4%左右)(2)。後來也發現,雌雄同體的木瓜之所以不會產生雄樹是因為,Y染色體顯然少了一些重要的基因,造成YY基因型(不論是YY、YYh或YhYh)的木瓜胚胎大約在授粉後25-50天就停止發育了。

過去有些研究認為,木瓜的Y以及Yh染色體約在七萬三千年前演化出來,因此認定雌雄同體的木瓜是自然演化的結果;最近一個跨國的研究發現,其實木瓜的Yh染色體大約在4000年前才出現在中美洲,大約與馬雅文明的興起同時。

為什麼他們會導出跟以前的人如此不同的結論呢?其中之一是,研究團隊在MSY與HSY裡面發現了反轉位子。過去的研究都將反轉位子列入比對,造成相似度大幅下降。另一個原因則是,研究團隊找了36個品系(其中12個為商業的雌雄同體品系,另外24個為野生木瓜的雄樹)來進行定序與比對。過去研究的結論,只根據一筆資料的定序結果。

分析野生木瓜的雄樹也幫助研究團隊發現,現代木瓜應該是源自於中美洲哥斯大黎加的北太平洋岸區。野生木瓜的Y染色體,依據MSY區域可分為三型,其中與Yh染色體最像的就是位於哥斯大黎加北太平洋岸區的MSY3。

台灣的水果實在是又多又好,因此我們不太覺得木瓜有什麼特別的地方。事實上,木瓜是最受歡迎的熱帶水果之一,若不計入香蕉與柳橙,木瓜產量世界第三,僅次於芒果與鳳梨(3)。

台灣在1940年代前因木瓜品種不佳(不知是否就是有公有母的那種?),所以木瓜的栽培不盛。後來引進國外品種以及自行育種後,木瓜的栽培一度極盛,甚至在1970年代還外銷日本賺取外匯;直到1980年代輪點病毒肆虐後才漸趨沈寂(4)。

研究團隊之所以對木瓜的性別決定系統感興趣,是想要找出抑制雌性的基因(female suppressor gene)。動物的Y染色體在演化的非常早期便已出現,要由基因上尋找較為不易;而木瓜則因為具有Y與Yh染色體兩種,研究者可以經由比較這兩個染色體找到抑制雌性形成的基因(們)。

當然,因此而發現雌雄同體的木瓜的產生應該與馬雅文明相關,也算是意外的發現。馬雅人應該是在選種時有意識地保留了雌雄同體的木瓜,畢竟不需要雄樹的存在便可以結果,對人類來說是方便得多了。

本文版權為台大科教中心所有,其他單位需經同意始可轉載)

參考文獻:

1. Ming R. et. al. 2011. Sex chromosomes in land plants. Annu. Rev. Plant. Biol. 62:485-514.
2. VanBuren R. et. al. 2015. Origin and domestication of papaya Yh chromosome. Genome Research. 3. Wikipedia. Papaya.
4. 李文立。2009。木瓜栽培管理手冊

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light