跳到主要內容

細胞壁(cell wall)的合成很複雜!很複雜!很複雜!

最近這些年,生質燃料(biofuel)是個熱門的話題;但是用什麼當原料,對於世界會有不同的影響。

怎麼說呢?最容易的,是使用甘蔗的蔗糖或玉米澱粉來發酵產生酒精,但是這類的燃料卻不免有「與人爭食」的疑慮。發生在2008年的全球糧食危機,就跟美國把一部份的玉米投入生質燃料的製作有關。

其次是使用動物或植物油脂(亞麻油、大豆油、椰子油等)製作的生質柴油。同樣的,這也有「與人爭食」的疑慮。

不論是使用澱粉/蔗糖為原料的酒精,或是使用動植物油脂的生質柴油,除了與人爭食的問題之外,另外一個問題是:若不要與人爭食,便需為了種植這些作物將更多的森林/草原改為農田;如此一來地球生態又會被改變,而大量開墾往往涉及燒荒,也會產生大量的二氧化碳與霧霾等等...

最環保的原料可能就是利用落葉、廢木、舊衣、廢紙等的纖維素,經過分解、發酵產生酒精了。由於這些原料原本就是廢棄物,也不需要為了取得他們而開墾森林與草原,當然也不會有燒荒的行為發生。

可是,說來簡單,做來卻不容易。怎麼說呢?原來,植物的細胞壁主要由三種成分組成:纖維素(cellulose),它是由β-葡萄糖所組成的長鏈;半纖維素(hemicellulose),它由木糖(xylose)、甘露糖(mannose)、葡萄糖以及半乳糖(galactose)所組成的分支狀結構;以及木質素(lignin)。其中的纖維素與半纖維素分解後都可以發酵為酒精,但是木質素不但無法發酵成為酒精,它也會成為纖維素與半纖維素分解時的重大障礙。

半纖維素。圖片來源:wiki

那麼,是否可以讓植物不要合成木質素呢?答案是:很難。木質素在植物次生細胞壁(secondary cell wall)時一起形成,主要的功能是幫助植物細胞壁的強度增加;同樣的,植物的導管(xylem)也需要木質素來提升強度,以免在輸送水分時導管因水快速流動所產生的負壓而崩塌。

木質素是一群奇妙的分子。它主要由三個單體(monomer)構成:

木質素的三個單體。1:paracoumaryl alcohol,
2: coniferyl alcohol, 3:sinapyl alcohol。圖片來源:wiki
這三個單體,彼此之間形成複雜的交聯鍵(crosslink)。這些交聯鍵如此複雜,使得木質素沒有固定的構造。

雖然不可能有不含木質素的植物,但如果對植物的細胞壁合成有足夠的了解,或許可以降低木質素的合成;也就是基於這樣的想法,麻州大學(University of Massachusetts)與加大戴維斯分校(University of California, Davis)的研究團隊,將過去累積的微陣列(microarray)資料以及許多期刊論文上與導管特化相關的基因調控彙整在一起。

從這些資料裡面,研究團隊找到50個與導管特化相關的基因(導管的形成需要纖維素、木質素與半纖維素),有些是轉錄調節因子(transcription factor),有些是酵素。接著,研究團隊以增強的酵母單雜交(enhanced yease one-hybrid)找出與導管特化相關的轉錄調節因子的啟動子(promoter),找到了45個。

最後的結果,總共有242個基因與導管特化相關的基因,他們彼此之間產生的互動有617種,其中的601種互動,是過去未曾發現的。

雖然這601種互動裡面可能會有一些不是有意義的互動,而是測試系統本身所產生的偽陽性;但是,這些資料提供了對想要開發適當材料做為纖維酒精的研究者一個好的資源。

雖然在我們的眼中,細胞壁只是無生命的物質;但對植物來說,是細胞壁使他們可以抵禦外敵的入侵、可以向上取得更多的光線、可以抗旱...仔細想想,細胞壁的合成與合成的調控機制這麼複雜,好像也不太意外了!

參考資料:

M. Taylor-Teeples, L. Lin, M. de Lucas, G. Turco, T. W. Toal, A. Gaudinier, N. F. Young, G. M. Trabucco, M. T. Veling, R. Lamothe, P. P. Handakumbura, G. Xiong, C. Wang, J. Corwin, A. Tsoukalas, L. Zhang, D. Ware, M. Pauly, D. J. Kliebenstein, K. Dehesh, I. Tagkopoulos, G. Breton, J. L. Pruneda-Paz, S. E. Ahnert, S. A. Kay, S. P. Hazen, S. M. Brady. 2014. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. DOI: 10.1038/nature14099

Siobhan M. Brady, David A. Orlando, Ji-Young Lee, Jean Y. Wang, Jeremy Koch, José R. Dinneny, Daniel Mace, Uwe Ohler, and Philip N. Benfey. 2007. A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. Science  318(5851): 801-806. [DOI:10.1126/science.1146265]

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light