跳到主要內容

植物也有血紅素(hemoglobulin)?

大家都知道動物有血紅素,負責幫我們攜帶氧氣到全身各處。 但是植物有血紅素嗎?植物要血紅素做什麼?

照理說,植物應該不需要什麼蛋白質幫他們攜帶氧氣並運送到全身各處,畢竟光合作用本身已經讓植物細胞充滿氧氣了。

但是很有意思的是,植物真的有血紅素,雖然沒有紅血球。雖然我們一般認為血紅素的功能是攜帶氧氣,但科學家研究的結果認為,血紅素最早的功能應該是偵測氧氣的存在,而不是攜帶氧氣(1)。

在植物裡總共有三種血紅素,第一種稱為「共生血紅素」(symbiotic,sHbs),主要分佈在豆科植物裡面,提供共生的根瘤菌以及根瘤內的植物細胞生存所需的氧氣。因為固氮作用(nitrogen fixation)是厭氧的反應,在有氧氣的存在下,根瘤菌內的固氮酵素(nitrogenase)會很快失去活性,因此在根瘤中必需維持在微氧(microaerobic)的狀態下:只能有一點點氧氣來提供根瘤菌與根瘤內的植物細胞生存,但是不能太高造成固氮酵素失去活性。因此,豆科植物中都有「共生血紅素」的存在。

第二種稱為「非共生血紅素」(non-symbiotic,nsHbs),分佈得非常廣泛,依照序列的分析、在植物中表現的狀況以及與氧氣結合的特性分為兩大類。單子葉植物多半沒有第二類的非共生血紅素(nsHb2),但是會有至少一個第一類非共生血紅素(nsHb1);而雙子葉植物通常會具備兩類,不過在豆科植物(以及部分雙子葉植物)中已經演化為共生血紅素了。

第三種稱為「片段血紅素」(truncated, trHbs)。

非共生血紅素到底有什麼功能呢?目前的研究結果認為,第一類可能與缺氧有關,在缺氧時用來改進植物的能量狀態;第二類則與粒線體細胞呼吸作用有關,在粒線體進行細胞呼吸作用時可以改進他的氧氣供應狀態(2)。

最近,瑞典的隆德大學(Lund University)的研究團隊,在甜菜(sugar beet,Beta vulgaris ssp. vulgaris)裡面找到了四個血紅素的基因,其中三個是非共生血紅素,第四個是片段血紅素。三個非共生血紅素裡面有兩個屬於第一類,一個屬於第二類。其中第二類的非共生血紅素(BvHb2)的表現量最高,而且在不同的部位裡表現量都很大(種子除外)。

甜菜根的橫切面。圖片來源:wiki

表現量有多大呢?一公頃的甜菜,可以萃取出一至兩公噸的血紅素;而隆德大學的研究團隊說,甜菜的血紅素跟人的血紅素非常相像,因此,他們希望能讓甜菜的血紅素做為輸血時的緊急備品(3)。畢竟,遇到重大車禍或是如伊波拉這類的疾病時,能否提供大量血液,常常是決定生與死的重要因素;尤其是在血庫不普遍,或是捐血的觀念尚未深入人心的區域,血源不足是常有的問題,如果能夠提供甜菜的血紅素做為緊急的備品,應該可以救活許多人命。

在歐洲,甜菜主要用於製糖;如果甜菜的血紅素真的可以用於人體做為輸血的備品,那麼以後在甜菜中萃取糖的過程中,也可以順便萃取甜菜血紅素。

想當初,甜菜之所以被發現,是在拿破崙戰爭時期,因為英國皇家海軍阻擋了由西印度群島來的運糖船,使得拿破崙注意到馬格列夫(Andreas Sigismond Marggraf)對甜菜等根莖類植物的研究(4)。馬格列夫由甜菜根中萃取了蔗糖,不過甜菜糖正式量產要到1801年,那時候馬格列夫已經不在人世了。

馬格列夫。圖片來源:wiki
雖然手邊的資料無法確定,究竟當時馬格列夫是為了什麼去研究萃取甜菜糖的方法(後來他的學生改良他的方法,使甜菜糖能在1801年開始量產),但如果他知道,當初那長在地上看來不起眼的植物的根,除了提供我們蔗糖以外,未來可能還能提供血紅素做為輸血的備品,他應該會覺得很欣慰吧!

(台大科教中心擁有此文版權,其他單位需經同意始可轉載。)

參考文獻:

1. Serge N. Vinogradov and Luc Moens. 2008. Diversity of Globin Function: Enzymatic, Transport, Storage, and Sensing. The Journal of Biological Chemistry, 283, 8773-8777.

2. Nélida Leiva-Eriksson, Pierre A. Pin, Thomas Kraft, Juliane C. Dohm, André E. Minoche, Heinz Himmelbauer and Leif Bülow. 2014. Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp. vulgaris). Plant Cell Physiol 55 (4): 834-844.

3. Lund University. Sugar beets could become blood substitute.

4. Henry Hobhouse. Seeds of Change. Six plants that transformed mankind. Counterpoint.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

秘魯傳統與現代:如何耕作(tillage)影響了土壤下的微生物世界

  Chiwa (左)與  barbecho(右)。圖片來源:Sci. Rep. 以前的人認為耕作可以「把土翻鬆」對植物有益,但近年來的研究卻發現,耕作會干擾土壤聚合,所以有了所謂的「免耕耕作」(no-till farming)。但是收穫後都不翻土,任由雜草叢生,也會造成操作上的一些困擾。 或許有限度的翻土,讓操作方便,也不會太擾動土壤,是否比較可行呢?最近在秘魯的研究,提供了一些資訊。 研究團隊探討了秘魯安第斯山脈傳統種植馬鈴薯的耕作系統對土壤微生物群落的影響。他們比較了「chiwa」(最小耕作)和「barbecho」(全耕作)兩種傳統耕作系統對土壤細菌多樣性、均勻度、群落組成和功能的影響。 「Chiwa」是一種最小耕作系統(MTS),其中常用「chakitaklla」(圖)。這種前印加時期的工具用於腳來定位,由一根長0.8至2.5米的木頭和一根長75至300毫米的金屬條製成。在這種MTS中,「chakitaklla」被用於草地上,以穿孔處植入馬鈴薯種子,種子被埋在0.1至0.2米的深度,並用相同的土壤覆蓋。三到四週後,種植區域附近的土壤被翻轉或翻面,形成種子塊莖上的土堤。 相對的,「barbecho」則是使用類似犁的由牛來拉的工具,甚至會使用耕耘機。 研究團隊發現,這兩種耕作系統雖然共享許多代謝途徑,但在厭氧途徑和多樣性途徑上存在差異,顯示了土壤管理對維持健康土壤微生物群落的重要性。 他們發現,「chiwa」耕作系統,即最小耕作方法,顯示出比「barbecho」耕作系統,即全耕作方法,更高的微生物多樣性。這說明在較少干擾土壤的情況下,能夠支持更廣泛的微生物群落,這對土壤健康和生態系統功能是非常重要的。 分析顯示「chiwa」耕作系統比「barbecho」耕作系統展現了更多的厭氧途徑。這意味著在較少干擾土壤的情況下,能夠促進特定微生物群落的發展,這些群落在厭氧條件下更為活躍。這一發現強調了傳統最小耕作方法在維持土壤微生物多樣性和功能上的潛在優勢。 研究強調了利用微生物生物指標來評估耕作系統影響的潛力,這些發現為理解傳統耕作系統下秘魯農業土壤的微生物群落及其生態提供了新的見解。 論文中沒有提到哪一種耕作法馬鈴薯產量比較高,這是比較可惜的事。 參考文獻: García-Serquén, A.L., Chumbe-Nolasco, L.D., N