跳到主要內容

硼(Boron)影響玉米的生長與繁殖

過去在植物生理學課本上,對於硼(Boron,元素符號B)對植物的重要性著墨不多。裡面只有提到,缺硼的植物,因為細胞分裂被抑制,在整體結構上會出現許多不正常的地方,而且嚴重會導致生長點(meristem)壞死。

在美國東半部以及密蘇里州,土壤缺硼是常見的作物產量不佳的原因。最近,在密蘇里州立大學(University of Missouri)的研究團隊,發現硼對於玉米的發育與繁殖佔很重要的角色。另一個在紐澤西州羅格斯大學(Rutgers University)的研究團隊,也有類似的發現。

這兩個研究團隊分別發現了一個硼通道蛋白(Boron channel protein)與硼運輸蛋白(Boron Efflux transporter);有意思的是,雖然兩個突變株的玉米其中一個名為tassel-less1tls1,意為爛穗子,tassel是雄花),而另一個叫做rotten earrte,意為爛穗,ear是雌花),但是缺乏這兩個蛋白的其中之一,都會使得玉米無法產生雄花與雌花。

玉米的雌花(ear)圖片來源:維基百科

玉米的雄花(tassel)圖片來源:維基百科

不過,不論這兩個基因的哪一個產生缺損,突變株的玉米都可以藉著額外添加硼酸(boric acid)來彌補。其中rotten ear的突變株,要在100 μM的硼酸下,才能有正常的型態發生,但是還是不能正常結果;要到提供200 μM的硼酸,才能夠完全正常,結出果實。但是野生種(wild-type)只需要23.4 μM的硼酸就夠了。

而在tassel-less1的實驗中,由於研究團隊是直接在土壤中測試,因此無法如rotten ear的實驗一般,可以把硼酸的濃度調到極高。但是,他們的實驗成果也顯示了,用含有硼酸的水來澆灌植物,的確可以使硼缺乏的症狀改善。

其中tls1除了運輸硼之外,還有輸水蛋白(aquaporin)的功能。而密蘇里的研究團隊也發現,由於位於細胞壁之間的果膠質(pectin)中的多醣分子RG-II(rhamnogalacturonan II)的結合需要硼的存在,缺乏硼會使結合降低,造成RG-II在果膠層中的比例降低。於是細胞與細胞之間的連結變弱,造成生長點(meristem)崩解。這也讓我們想到,植物生理學課本中所記錄下來的:生長點壞死。

但是硼缺乏是否真的影響細胞分裂?兩個研究團隊都沒有提到這一點,但由於這兩個基因的任一產生缺損,都可以用添加更多硼的方式來彌補,也表示了植物還有其他運輸硼的途徑。而這兩個基因都缺損的玉米,是否能以添加硼的方式彌補?以及硼在細胞分裂上的角色是什麼?這些都有待回答了。

參考文獻:

2014/8/25. Boron facilitates stem cell growth, development in corn. Science Daily.

Mithu Chatterjee, Zara Tabi, Mary Galli, Simon Malcomber, Amy Buck, Michael Muszynski, and Andrea Gallavotti. 2014. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility. Plant Cell 26: 2962-2977.

Amanda R. Durbak, Kimberly A. Phillips, Sharon Pike, Malcolm A. O’Neill, Jonathan Mares, Andrea Gallavotti, Simon T. Malcomber, Walter Gassmann, and Paula McSteen. 2014. Transport of Boron by the tassel-less1 Aquaporin Is Critical for Vegetative and Reproductive Development in Maize. Plant Cell 26: 2978-2995.

留言

這個網誌中的熱門文章

關於蕃薯,你知道你吃的是什麼品種嗎?

蕃薯( Ipomoea batatas )從臺灣人的主食、轉變為副食、又轉變為飼料,最後在養生的風潮下,再度躍上餐桌,成為美食,可有人關心過,我們吃的蕃薯是什麼品種嗎? 圖片來源: 農委會 上面這張照片裡的蕃薯,中間的TN57與TN66,就是台農57號與台農66號,是臺灣最受歡迎的兩種蕃薯喔! 台農57號在1955年由嘉義農試分所將日治時代培育出的台農27號與南瑞苕種(Nancy hall)雜交育成。它黃皮黃肉,目前還是全臺灣產量最大的蕃薯。口感鬆軟,適合烤、煮食或製作薯條。主要產地在雲林、台南、高雄。適合在四~十月間種植。台農57號還曾經隨著農技團飄洋過海到史瓦濟蘭去,協助他們解決糧食問題呢! 至於台農66號呢,就是所謂的紅心蕃薯啦!台農66號是1975年也是由嘉義農試分所選出,1982年正式命名。它是目前栽植最普遍的食用紅肉番薯。在臺灣,幾乎全年皆可栽種,秋冬作五個月可收穫,春夏作四個月就可以收穫囉! 最右邊的台農73號,就是現在所謂的「芋仔蕃薯」啦!它是在1990年以台農62號(♂)x清水紫心(♀)雜交後,在2002年選拔出優良子代CYY90-C17,並於2007年正式命名。由於肉色為深紫色,所以得到「芋仔蕃薯」的暱稱。本品種富含cyanidin 及peonidin 等花青素,具抗氧化功用。 至於常吃的蕃薯葉,則是以桃園2號與台農71號為主,這兩種葉菜蕃薯都不用撕皮就可以直接煮來吃,而且莖葉不易倒伏,方便農民採收喔! 如果您愛吃的是蕃薯的加工食品,如蕃薯餅、蜜蕃薯、蕃薯酥,其實他們大多也是用台農57號與66號來加工的喔! 參考文獻: 蔡承豪、楊韻平。2004。臺灣蕃薯文化誌。貓頭鷹出版。 行政院農委會。 甘藷主題館 。

在太空站種蔬菜好像不太安全?

  羅曼生菜,萵苣的一種。圖片來源: 維基百科 美國致力於在太空站種蔬菜已經不是新聞了,之前他們還確認了太空站種出來的蔬菜與地表種出來的一樣營養。 這當然是好事,可是,最近的研究卻發現,在太空站種蔬菜,要非常小心! 發生了什麼事呢?原來,科學家發現,微重力狀況會讓萵苣(lettuce)的氣孔(stomata)更傾向於張開,而這使得萵苣更容易被病菌感染。 研究團隊如何製造微重力狀態呢?他們使用了一種稱為2-D旋轉儀(clinostat)的設備來模擬微重力環境。透過以每分鐘2圈(2 RPM)和每分鐘4圈(4 RPM)的速度旋轉萵苣,可以創造出類似於太空中微重力的條件。 為什麼這樣轉可以模擬微重力環境呢?原來,這種旋轉可以避免植物細胞內的平衡石(statoliths,一種參與重力感應的胞器,含有密度特別高的澱粉顆粒)停留在固定一處,從而模擬了缺乏重力的狀態。 接著,他們觀察植物在微重力狀況下的狀況。他們發現,在沒有病菌的狀況下,每分鐘2圈的速度會讓植物的氣孔開口變小,但每分鐘4圈的速度對氣孔的開閉沒有多大影響。 可是,如果同時有病菌存在時,不論是每分鐘2圈還是4圈,萵苣的氣孔都沒有辦法關得像有重力狀況一樣小。這會造成什麼影響呢? 研究團隊透過使用共聚焦顯微鏡對葉片組織進行堆疊影像分析,來觀察並量化模擬微重力條件下沙門氏菌的入侵深度。他們發現,在每分鐘4轉(4 RPM)條件下,與未旋轉的對照組相比,沙門氏菌的入侵更深,並且在植物內的菌群密度也更高。這意味著模擬微重力條件下的旋轉,不僅促進了沙門氏菌通過氣孔來入侵,也有利於這些病原體在植物組織內的生長和擴散。 這顯然是個壞消息,但是研究團隊並不氣餒,他們想知道,如果提供植物益菌,能不能讓植物提升防禦力呢? 於是他們加入了枯草桿菌(Bacillus subtilis)UD1022。UD1022是一種植物生長促進根圈細菌(PGPR),過去已知,它透過多種機制對植物有益,能促進生長、增強抗逆性、以及作為生物防治劑對抗病原體。研究團隊的觀察發現,UD1022也能夠限制氣孔張開的幅度,從而限制了沙門氏菌等病原體通過氣孔進入植物內部。 然而,研究團隊發現,在模擬微重力條件下,UD1022對氣孔開口的限制作用受到了強烈的抑制。在每分鐘4轉(4 RPM)的條件下,與未旋轉的對照組相比,UD1022處理的植物其氣孔開口寬度

發光矮牽牛(petunia)即將於美國上市

  圖片來源: Nature 在1986年,第一株發光植物--發光的煙草( Nicotiana tabacum )問世了。那時候,就聽到有人說,或許有一天,我們可以讓路樹發光,那樣就不需要路燈,可以省下許多電費。 聽起來很棒,不是嗎? 今天的新聞提到,由 Light Bio公司 製造的「螢火蟲矮牽牛」(Firefly Petunia)即將在美國上市。事實上,美國本土48州已經可以預購了。 從發光煙草到螢火蟲矮牽牛,這條路走了將近40年。 對Light Bio的CEO與共同創辦人Keith Wood來說,這尤其意義非凡,因為他就是當初做出發光煙草的人。 但是,螢火蟲矮牽牛與發光煙草,完全是兩回事。 當初的發光煙草,是植入普通東方螢火蟲( Photinus pyralis )的冷光素酶(luciferase)。螢光素酶需要接觸到它的受質「冷光素」(luciferin),將冷光素氧化後才會發出冷光。所以,這樣的發光機制意味著,你要提供它冷光素,才會看到光。如果真想要把它拿來當作路燈,是非常不實用的。 不過,冷光素酶在生物科技上的應用非常廣泛。它被拿來當作所謂的「報告基因」(reporter gene)使用。科學家只要把相關基因的啟動子(promoter)後面接上冷光素酶的基因,就可以定量該啟動子在特定狀況下的表現量。 但是,對於想要看植物在黑暗中自己熠熠發光的人們來說,冷光素酶顯然不是選擇。 後來有從維多利亞多管發光水母( Aequorea victoria )中分離出來的綠色螢光蛋白(GFP,green fluorescent protein)。綠色螢光蛋白不需要受質,但是它需要光的刺激:395 nm和475 nm分別是最大和次大的激發波長。所以,要它發光,要額外提供給它395 nm的光波。這也是為什麼,之前曾經引起一波熱潮的螢光魚,需要購買特殊的燈管。 自然界會發出冷光或螢光的,也並不只限於螢火蟲與水母。還有一大群蕈類,也會發出螢光。即將上市的螢火蟲矮牽牛,其實是植入了小皮傘科(Marasmiaceae)的 Neonothopanus nambi 的整條螢光途徑。這個基因需要咖啡酸(caffeic acid)作為受質,不過植物本來就會合成咖啡酸,所以不是什麼大問題。 2023年9月,美國農業部核准了螢火蟲矮牽牛上市。為了要通過審查,Light